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Abstract

The effects of height and radius ratio with a Newtonian fluid have been investigated numerically to determine heat transfer by natural
convection between the sphere and vertical cylinder with isothermal boundary conditions. The inner sphere and outer vertical cylinder
were heated and cooled in a steady change of temperature. Calculations were carried out systematically for a range of the Rayleigh num-
bers to determine the average Nusslet numbers which are affected by the geometric ratio parameters (HR and RR) on the flow and tem-
perature fields. The governing equations, in terms of vorticity, stream function and temperature are expressed in a spherical polar
coordinate system. Results of the parametric study conducted further reveal that the heat and flow fields are primarily dependent on
the Rayleigh number and height and radius ratio, for a Prandtl number of 0.7, with the Rayleigh number ranging from 103 to 106,
and the height and radius ratio varying from 1.2 to 5.0. Above all, the specification of different convective configurations has a significant
effect on the average heat transfer rate across the composite annulus gap.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The prices of petroleum keep going up at present. The
requirement of the further energy always leans on the exter-
nal energy surely, such as solar energy, wind-force, terres-
trial heat, etc. The solar energy was the most extensively
applied among them because of its importance in the ther-
mal storage systems of the solar energy collectors. In partic-
ular, the problems of buoyancy-driven flow in enclosed
spaces are being investigated most extensively; hence the
natural convection heat transfer in the annulus between
two concentric and eccentric cylinders, and that in the
annulus between two concentric and vertically eccentric
spheres have received considerable attention from research-
ers in many diverse fields of applications. Such problems
commonly occur within the geophysical fields, cooling of
electronic equipment, aircraft cabin insulation, solar energy
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2006.11.046

* Tel.: +886 6 5977051; fax: +886 6 5977050.
E-mail address: ruey666@cc.feu.edu.tw
collectors, thermal storage systems as well as nuclear reac-
tor design, and many other practical situations. As a result,
extensive experimental and theoretical works deal with
flow and associated heat transfer characteristics of natural
convection in annuli between two isothermal horizontal
concentric and eccentric cylinders [1–7]. Experimental
research on natural convection in annuli between two iso-
thermal concentric spheres has been described in Refs.
[8–10]. The flow patterns in the annuli between the concen-
tric spheres were observed for various radius ratios, Prandtl
numbers, and Rayleigh numbers. These were crescent
eddies, kidney-shaped flows, and falling-vortices. Using
the numerical analysis investigate steady state laminar free
convection in annuli between two isothermal concentric
spheres in Refs. [11–14] have been reported in the literature.
Other solutions of the problem which deal with tran-
sient natural convection in the same geometric structure
with uniform wall temperatures have been made in Refs.
[15–20]. Further understanding of the different geometric
structure in a steady state and transient convective heat
transfer phenomena is essential to design and operation of
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Nomenclature

Cp specific heat at constant pressure
g local gravitational acceleration
h heat transfer coefficient
H dimensionless height of the vertical cylinder
H height of the vertical cylinder
HR height ratio H/rs

k thermal conductivity

L gap,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 þ �r2

c

q
� �rs

Nu local Nusselt number, hL/k

ðNuÞ average Nusselt number, hL/k

P, Q function used in coordinate transformation
Pr Prandtl number, m/a
R dimensionless radial coordinate, �r=L
�r radial coordinate
R dimensionless radial profile of outer cylinder,

R=L
R radial profile of outer cylinder
Ra Rayleigh number, gbDT L3=ma
RR radius ratio, rc/rs

T dimensionless temperature, ðT � T cÞ=ðT s � T cÞ
T temperature
v velocity
V dimensionless velocity, vL/a

Greek symbols

a thermal diffusivity
b thermal expansion coefficient

DT temperature difference between spheres, T s � T c

g dimensionless radial coordinate in transformed
plane, (r � rs)/(R � rs)

n dimensionless angular coordinate in a spherical
system, h/p

h angular coordinate in a spherical system
a*, b*, c* factor of coordinate transformation
h* angular position at vortex center
l dynamic viscosity
m kinematic viscosity, l/q
q fluid density
t*, m* factor of coordinate transformation
u azimuthal coordinate in a spherical system
w dimensionless stream function, �w=aL
�w stream function in spherical coordinates
x dimensionless vorticity, �xL2=a
�x vorticity

Subscripts

c, s cylinder and sphere
d diagonal
m mean
max maximum
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various engineering application of thermal fluid systems,
such as solar energy collectors and energy systems including
nuclear reactors. This would be the reason for the fact that
studies on natural convection between concentric and verti-
cally eccentric spheres have increased recently [21–23]. A
numerical solution for geometric shape between concentric
and vertically eccentric spheres of various radius ratio with
a large range of Rayleigh number Ra = 103–5 � 105 has
been computed. However, most of the studies are concerned
with the concentric or vertically eccentric spheres of the
problems, thus knowledge about thermal convection with
other combination of the different geometric shape [24–27]
is limited in thermal science field.

To further extend the existing knowledge on natural con-
vection heat transfer of Newtonian fluids in the thermal
engineering, the author is motivated by interest in demon-
strating the effects of a height and radius ratio as well as
buoyancy in the laminar free convection flow between
sphere and vertically cylinder with constant temperature
boundary conditions. A finite difference solution is obtained
for the governing equations in terms of stream function,
vorticity, energy in a spherical coordinate system. The
effects of geometric structure, Rayleigh number, and fluid
property on the flow fields and heat transfer characteristics
are discussed, respectively. The details of the method are
described in the next section. We wish to point out that
our formulations were represented by general form for var-
ious natural convection problems involving in the annuli
combined with inner sphere and outer vertically cylinder.

2. Mathematical formulation

The geometric configuration of the physical system is a
composite annulus which consists of the inner sphere and
vertical cylinder. It is the arrangement of circular cylinder
of radius rc with height h, which contain a circular sphere
of radius rs and the common origin of the coordinates
located at O. The height ratio is repressed by HR which
is ratio of cylindrical height to spherical radius, and the
RR is defined by radius ratio which is the ratio of the radius
of the cylinder to sphere. For a natural convective heat
transfer problem, the largest heat transfer variation due
to values of HR and RR occurs when the direction of cylin-
drical height is aligned with the gravitational direction.
Therefore, this study focuses on the problem that HR

and RR are vertically and horizontally shifted, respectively.
The space between the inner sphere and outer vertical

cylinder is filled with a viscous and incompressible Newto-
nian fluid. Initially, the annuli are at a uniform temperature
Tc, and a quiescent state is assumed, while the inner sphere
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is heated with a constant temperature Ts and the outer ver-
tical cylinder surface with top and bottom surface is cooled
at a fixed temperature Tc. The heat transfer takes place in
the annuli by natural convection. A model to describe the
process has been derived with the following assumptions:
(1) the flow within the annulus is laminar, (2) all fluid prop-
erties, are taken to be constant, except for the density var-
iation with temperature in the buoyancy term, i.e. the
Boussinesq approximation is valid, (3) the flow is symmet-
rical about the vertical axis which is parallel to the line of
gravity acceleration, and (4) viscous dissipation and radia-
tion effects are neglected.

A spherical coordinate system (r,h,u) and grids system
were chosen as shown in Fig. 1. The angle h = 0� is defined
on the top surface of the cylinder and h = 180� is defined
beneath the bottom surface of the cylinder. To deal with
the numerical formulation associated with the complex
physical domain of the annulus between sphere and vertical
cylinder, a radial coordinate transformation is adopted to
map the cylinder-sphere annular gap into a unit sphere.
The surface of outer cylinder r = R(h) [28] is transformed
into the unit sphere g = 1, while the inner sphere radius
r = rs is transformed into the pole g = 0. This transforma-
tion is obtained by defining a new radial coordinate as
g ¼ r�rs

RðhÞ�rs
ð1:1Þ

n ¼ h
p ð1:2Þ

(
ð1Þ
where R(h) denotes variable dimensionless profile of the
outer cylinder surface measured from the center of the in-
ner sphere, which is symmetric with respect to the vertical
axis in any angular position of u-direction and is expressed
by
R

rs

Z

X

g

Y

H

rc

Fig. 1. Coordinate and grids system for annulus between sphere and
vertical cylinder.
RðhÞ ¼

H sec h 0 6 h < hd

rc csc h hd 6 h < ðp� hdÞ

�H sec h ðp� hdÞ 6 h < p

8>><
>>: ð2Þ

The governing equations for the two-dimensional prob-
lem in dimensionless terms can be written as follows:

Vorticity transport equation:

1

r2 sin h
k�½wnxg � wgxn� þ ½t�wg þ m�wn�x
� �

¼ Pr r2
1 �

1

r2 sin2 h

� �
x� Pr � Ra gr sin hþ gh

cos h
r

� �
T m

�

þ �r sin hþ �h
cos h

r

� �
T n

�
ð3Þ

Stream function equation:

D2
1w ¼ xr sin h ð4Þ

Energy equation:

1

r2 sin h
k�ðwmT n� wnT mÞ
	 


¼ r2
1T ð5Þ

where

r2
1 ¼ P

o

og
þ Q

o

on
þ a�

o2

og2
þ 2c�

o2

og
onþ b�

o2

on2

� �
ð6Þ

D2
1 ¼ a�

o2

og2
þ c�

o2

ogoh
þ b�

o2

oh2
þ A� cot h

r2
gh

� �
o

og

� C � cot h
r2

nh

� �
o

oh
ð7Þ

P ¼ Aþ 2

r
gr þ

cot h
r2

gh ð8:1Þ

Q ¼ C þ 2

r
nr þ

cot h
r2

nh ð8:2Þ

8>><
>>: ð8Þ

A ¼ grr þ
1

r2
ghh ð9:1Þ

C ¼ nrr þ
1

r2
nhh ð9:2Þ

8>><
>>: ð9Þ

a� ¼ g2
r þ

1

r2
g2

h ð10:1Þ

b� ¼ n2
r þ

1

r2
n2

h ð10:2Þ

c� ¼ grnr þ ghnh ð10:3Þ

8>>>>><
>>>>>:

ð10Þ

k� ¼ grnh � ghnr ð11:1Þ

t� ¼ gh

r
� gr cot h ð11:2Þ

m� ¼ nh

r
� nr cot h ð11:3Þ

8>>>>><
>>>>>:

ð11Þ

The associated boundary conditions for the problem
considered are as follows:



W.R. Chen / International Journal of Heat and Mass Transfer 50 (2007) 2656–2666 2659
At g = 0:

w ¼ wg ¼ 0; T ¼ 1; x ¼ 1

rs sin h
a�wgg;

N ¼ 1

2
x ð12Þ

At g = 1:

w ¼ wg ¼ 0; T ¼ 0; x ¼ 1

R sin h
a�wgg; N ¼ 1

2
x ð13Þ

At n = 0, 1:

w ¼ x ¼ N ¼ T h ¼ 0 ð14Þ
From the above formulation, the governing parameters for
the present problem are the Rayleigh number Ra, the Pra-
ndtl number Pr, the height and radius ratio are HR and
RR, respectively.

The local and average Nusselt number at inner sphere
and outer vertical cylinder surface are defined as:

Nus;c ¼ �
1

R
� 1

rs

� �
r2grT g

	 

g¼0;1

ð15Þ

Nu ¼ �p
Z 1

0

Nus;c

sin h
2

� �
dh ð16Þ
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3. Numerical method

From the above formulation, the parameters of govern-
ing equations are thus the Rayleigh number Ra, the Prandtl
number Pr, the height ratio HR, and the radius ratio RR.
To solve the present problem, the governing equations as
well as boundary conditions were discritized by the finite
difference method. Eqs. (3)–(5) expressing the vorticity
transport, stream function, and energy transport equations,
together with boundary conditions in Eqs. (12)–(14), pro-
vide a complete description of the problem. In this study,
the finite difference equations were derived by using central
difference approximations for the partial derivatives except
the convective terms for which a quadratic upwind differ-
ence formula was employed. Derivative at the boundaries
were approximated by a three point forward or backward
difference. The equations of temperature, angular momen-
tum and vorticity were solved by successive line relaxation
method [29], while the stream function equation was solved
by the modified strongly implicit procedure (MSIP) [30].
The solution was considered convergent when the relative
error between the new and old values of the field variables
U was less than a prescribed criterion (10�4), where U rep-
resents x, w and T

Unew � Uoldj jmax

jUnewjmax

6 10�4: ð17Þ
0.0 30.0 60.0 90.0 120.0 150.0 180.0
θ

0.0

Fig. 2. Comparison of the local Nusselt number at the different grid sizes
for Pr = 0.7, Ra = 105 and HR = RR = 1.2.
4. Results and discussion

The results of the numerical calculation have been per-
formed systematically for a Newtonian fluid of the Prandtl
number fixed at 0.7, The Rayleigh numbers ranging from
103 to 1.0 � 106, the height and radius ratio varying from
1.2 to 5.0. To see the effect of mesh size on the numerical
result, computations for an annulus were carried out using
seven different mesh sizes. The resulting Nusselt numbers
are presented in Fig. 2. The local Nusselt numbers, obtained
from seven different mesh sizes, are similar to each other,
except that the local value of outer sphere at h = 0� and
h = 35� are sensitive to the nodding size, and the result
seems to converge at 52 � 52. In order to solve the compu-
tation effort, the results presented in this article are all
obtained by using the grid size of 52 � 52. Numerical test
calculations were also performed for different grid sizes.
Two different grid sizes depending on the HR, RR and Ra
have been used for the calculations: 52 (radial direction)
by 52 (angular direction) for range of 1.2 6 HR and
RR 6 5.0 within range of 1.0 � 103

6 Ra 6 1.0 � 105, 62
by 62 for range of 1.4 6 HR and RR 6 5.0 with
Ra = 1.0 � 106. The maximum Rayleigh number was lim-
ited by numerical convergence, which in turn was depen-
dent on the radius ratio. The limit of the Rayleigh
number is 106 for the height and radius ratio of 1.2. The
computations were performed on a personal computer
(Intel (R) Pentium (R) D CPU 3.20 GHz) and required
two different CPU time are 339 and 567 s for 52 � 52 and
62 � 62 grid systems, respectively.

Fig. 3 shows a distribution of streamlines and isotherms
at fixed height and radius ratio of 1.2, i.e., HR = RR = 1.2,
and Prandtl number of 0.7, for a series Rayleigh number of
Ra = 103, 104, and 105, respectively. This series of results is
designed to show the individual influence of height and
radius ratio for the heat and flow fields. Because the prob-
lem is symmetric to the vertical axis, each annulus contains
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Fig. 3. Streamline (right) and isotherms (left) for HR = RR = 1.2: (a)
Ra = 103; (b) Ra = 104; and (c) Ra = 105.
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the isotherms on the left and streamlines on the right. Their
number of contours within geometry is kept constant at
eight for isothermal and streamline. Since the inner sphere
is kept hotter, the hot fluid near the surface of the inner
sphere rises upward due to thermal expansion. The uprising
plume is then cooled down by the colder fluid near the
upper part of the surface of the outer cylinder. The colder
and denser fluid will eventually flow downward along the
surface of the outer cylinder. For the conditions selected
in the Rayleigh number of 1000, the maximum value of
stream function wmax = 1.2733 lies at h = 43.9024� from
the upper vertical line of symmetry and at about the midgap
position. At this Rayleigh number, the fluid flow in the half-
annulus is weak and forms a vertical axial symmetrical
recirculation in the clockwise direction, making the stream-
line patterns are located on a near corner of the upper cyl-
inder. The isotherms are nearly circular, further indicating
little influence of the convective flow on heat transfer con-
duction was the dominant mode of heat transfer. The center
of the triangular-shaped eddy stayed close to midgap as
variables were changed, but moved into the upper midgap
as the Rayleigh number increased. When the case of
Ra = 105, the vortex center (the position with the maximum
value of the stream function) falls to the upper portion and
dips near the h = 48.2927� position when the height and
radius ratio is reduced, the counterclockwise rotating sec-
ondary cell in the top of the midgap while the primary cen-
tral eddy is clockwise. Even though the third cell appears
near the vertically symmetric axis, it rotates clockwise and
is weak while the secondary vortex rotates anti-clockwise.
Though the geometry provides a least favorable circum-
stance for the development of natural convection, the nar-
row gap regions of the upper and bottom was essentially
convective flow with high velocities. The laminar convec-
tion was the dominant mode of heat transfer. It is revealed
that the isotherms are an inversion and streamlines are
twin-triangular eddy-shaped. Finally, the maximum value
of stream function is wmax = 43.5293.

Fig. 4 presents a series of streamline configurations and
isotherm distributions for various combinations of Pr =
0.7; Ra = 103, 104 and 105 and HR = RR = 2.0. When com-
pared with Figs. 3–5 show that at fixed Rayleigh number, as
the height and radius ratio increases with decrease in the
maximum value of the stream function. It is revealed that
the source of the buoyancy-driven flow [31] mainly coming
from the inner spherical surface because the surface has
greater contact area of the heat transfer with respect to
the smaller value of HR and RR. So that it has greater buoy-
ancy that drives the fluid flow, making the fluid with high
velocity flow within this narrow gap. Common to the results
displayed for the three geometries (i.e., HR = RR = 1.2, 2.0
and 5.0) is that as the Rayleigh number increases, the max-
imum value of the stream function increases, indicative of a
higher rate of heat convection due to the stronger buoyancy
flow in the gap. The height and radius ratios of 1.2 and 5.0
cases are shown in Figs. 3 and 5. As expected, as the Ray-
leigh number increases, the vortex center rises to the upper
portion except that the secondary cell is formed in this nar-
row region and possessed of upper portion; the primary
clockwise cell is dips near the h = 48.2927� as shown in
Fig. 3 when the Rayleigh number is 105. Surprisingly, the
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Fig. 4. Streamline (right) and isotherms (left) for HR = RR = 2.0: (a)
Ra = 103; (b) Ra = 104; and (c) Ra = 105.
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Fig. 5. Streamline (right) and isotherms (left) for HR = RR=5.0:
(a) Ra = 103; (b) Ra = 104; and (c) Ra = 105.
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height and radius ratio is 2.0, as shown in Fig. 4. It is evident
that the maximum value of stream function increases with
increasing the Rayleigh number but the position of the vor-
tex center always stays on the upper portion at the position
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of h = 48.2927�. It appears that the fluid within such favor-
able configuration for convective motion can be provided
with both timely and favorable heat transfer convective
environment.

Fig. 5 shows a larger value of height and radius ratio,
i.e., HR = RR = 5. This geometric expressed that the fluid
in the inner spherical surface for the convection contact
area is relatively smaller than that of the outer cylindrical
surface. It examines that the main power source of the fluid
flow near the inner spherical surface with respect to the
convection contact area is relatively smaller than those cor-
responding to the other values of HR = RR = 1.2 and 2.0.
Since, the total heat flux from inner spherical surface to the
outer cylindrical surface is relatively reduced under the
same situation of the Rayleigh number. Even though
the fluid within the spacious configuration should have a
favorable convection, the buoyancy-driven flow is weak.
However, within such favorable configuration for convec-
tive motion, as Ra increases, i.e., the value of Ra from
103 to 105, the fluids motion becomes stronger; the position
of vortex center of the eddy shifts upward, first moving
upward and then slowly moving upward, finally staying
at the angular position of h = 43.9024� (from the upper
vertical line symmetry about midgap position) while the
maximum value of stream function wmax = 5.2613.

The local and average Nusselt numbers for the inner
sphere and outer vertical cylinder were defined as in Eqs.
(15) and (16). Basically, an average Nusselt number of
unity expresses pure conduction heat transfer and an aver-
age Nusselt number larger than unity indicates the
enhancement of heat transfer by free convection instead
of the pure conduction heat transfer. The variation of local
Nusselt number on the inner sphere and outer vertical cyl-
inder at Pr = 0.7, HR = RR = 1.2 with different Rayleigh
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Fig. 6. The variation of local Nusselt number on the inner sphere and
outer vertical cylinder for HR = RR = 1.2, Pr = 0.7 and Ra = 103, 104 and
105.
number are Ra = 103, 104 and 105 is shown in Fig. 6. It
is interesting to investigate the influence of various Ray-
leigh numbers on the thermal transport of the gap. It can
be shown that the local Nusselt number distributes on
the inner sphere and outer vertical cylinder with the New-
tonian fluid. In this geometric, i.e., HR = RR = 1.2, when
the Rayleigh number increases, the laminar convection is
dominant mode of the heat transfer and multi-cell is grad-
ually formed in the upper narrow portion of the annuli. It
is apparent that the some peak values of the local Nusselt
number are located on the outer cylindrical surface
between the primary flow and the secondary flow in the
narrow gap. It implies that the fluid flow into the wall
has a maximum impulse normal to the wall, where is just
stagnant flow forward on the surface. On the other hand,
the fluid flow to be distant from the wall where has a min-
imum impulse normal to the wall, and is sometimes called
stagnant flow backward on the surface. When the Rayleigh
number is Ra = 105, it is remarkable that the maximum
local Nusselt number on the outer vertical cylinder (Nuc)
and the minimum local Nusselt number (Nus) on the inner
sphere are located on the angular position of h = 35� and
31�, respectively, just between primary cell and secondary
cell. Therefore, the maximum stream function of the pri-
mary cell is both larger and stronger than those for the
lower Rayleigh number; the streamlines are depicted in
the larger feature and have multi-cell while the isothermals
exhibit to have multi-inversion.

Fig. 7 presents a series of local Nusselt number distribu-
tion on the inner sphere and outer vertical cylinder for
height and radius ratio of 2.0 and Prandtl number of 0.7
with various Rayleigh numbers. For the specified heat flux
on the wall, the surface Nusselt number is one of the
important variables in the present calculations, since it
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Fig. 7. The variation of local Nusselt number on the inner sphere and
outer vertical cylinder for HR = RR = 1.2, Pr = 0.7 and Ra = 103, 104 and
105.
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can reflect the local heat transfer characteristics along the
solid surface. The circumferential Nusselt number distribu-
tion along the solid surface is at various Ra. Common to
the results displayed for this geometry (HR = RR = 2.0)
is that as the Rayleigh number increases, the local Nusselt
number (Nuc) of the outer vertical cylinder has some
clearer peak values of the Nuc that increases between the
angular position h = 20� and 25� near the upper outer ver-
tical cylinder surface, while Nuc decreases relatively at
h = 135–150� near the bottom of the outer cylinder. It indi-
cates that the peak value with a higher rate of heat transfer
was due to the stronger buoyancy flow into the solid sur-
face in the upper portion, while the mitigating value with
a lower rate of heat transfer in the bottom was essentially
stagnation with low velocities. For the local Nusselt num-
ber distribution on the inner sphere (Nus) increases slowly
with increasing Rayleigh number (Ra), which is distributed
on the major portion of the bottom of the sphere with mid-
dle convection mode. But the heat transfer with conduction
mode is distributed on the minor portion of the top of the
sphere.

Fig. 8 shows the local Nusselt number distribution on
the inner sphere and outer vertical cylinder for height
and radius ratios of 5.0 and Prandtl number of 0.7 with
various Rayleigh numbers (Ra). As Rayleigh number
increases, the peak values of the Nuc always occur near
the top of the cylinder and the nadir values of the Nus

always stays near the top of sphere in the axis of vertical
symmetric at h = 0� for all Rayleigh numbers, where the
fluid upflows mainly along the radial and vertical direction,
but there is minor angular velocity. It is apparent that the
maximum local Nusselt number (Nuc) on the top surface of
cylinder belongs to a laminar free convection and the min-
imum local Nusselt number (Nus) on the top surface of the
sphere seems to be into a pure conduction. On the con-
trary, as the fluid moves downward, it loses energy and
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Fig. 8. The variation of local Nusselt number on the inner sphere and
outer vertical cylinder for HR = RR = 1.2, Pr = 0.7 and Ra = 103, 104 and
105.
eventually forces the separation of the thermal boundary
layer along the outer cylinder. The heavy fluid then enters
the thermal boundary layer of the inner sphere and com-
pletes the recirculation pattern. When the bottom of the
annulus in the axis of vertical symmetric is near h = 180�,
where the fluid upflows on the bottom inner sphere surface
with moderate convective heat transfer mode while upflows
to leave the bottom outer cylinder surface with lower con-
duction heat transfer mode. We also find that the Nuc,s

between h = 60� and 180� are smaller and milder, which
implies that the local heat flux at both inner sphere and
outer vertical cylinder should be almost independent of h.

Fig. 9 shows the average Nusselt number Nu varies with
height and radius ratio (HR and RR) under the various
fixed values of Ra = 103, 5.0 � 103, 104, 5.0 � 104, 105,
5 � 105 and 106, respectively. It can be observed that each
convex curve that has a maximum of the heat transfer,
which arises within the range 1.6 6 HR = RR 6 3.4
depending primarily on the Rayleigh number. This is due
to the presence of optimum geometric convective space
under the same magnitude of Rayleigh number, i.e., the
same effect of buoyancy. The occurrence of maximum heat
transfer signifies onset of a regime where the decrease in the
conduction with corresponding to the height and radius
ratio (HR and RR) is enough to offset the increase in con-
vection. When the Ra is fixed at 103, the maximum average
Nusselt number ðNuÞ is 1.03188 as HR = RR = 3.4 which is
best convective space relative to the other values of
HR = RR. The maximum Nusselt number ðNuÞ versus cor-
responding to the value of the height and radius ratio (HR

and RR) with various different Rayleigh number is dis-
played in Table 1. At fixed Rayleigh numbers, the average
Nusselt number always increases fast with increasing the
height and radius ratio initially until when the maximum
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Fig. 10. Average Nusslet number as function of Rayleigh number for
Pr = 0.7 at four different height and radius ratios.

Table 1
Maximum average Nusselt number with respect to the height and radius ratio under various different Rayleigh numbers

Ra 103 5 � 103 104 5 � 104 105 5 � 105 106

Pr = 0.7
HR = RR 3.4 3.2 2.8 2.2 2.0 1.8 1.8
Numax 1.03188 1.28816 1.50114 2.19869 2.57971 3.66347 4.26997

Table 3
Empirical constants and deviations for Eq. (18)

HR = RR C M Ra Maximum
deviation (%)

Pr = 0.7
1.2 0.25747 0.17832 103–5 � 105 12.07
2.0 0.20597 0.21853 103–106 8.43
3.6 0.26301 0.18998 103–106 5.09
5.0 0.30069 0.17016 103–106 5.53
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value is reached, mitigating decreases. When compared
with that at fixed values of HR and RR, it is remarkable
that the average Nusselt number increases as the Rayleigh
number increases for over all values of HR and RR. These
are to be expected, since the magnitude of buoyant force
and hence the strength of the convective cells increases with
Ra.

The circumferentially averaged Nusselt number is
defined in Eq. (16). A steady state values obtained in the
present study are given in Table 2, for various Rayleigh
numbers in the four geometry structures under consider-
ation. As the Rayleigh number increases beyond the con-
duction regime, the curves beyond the pseudo-conduction
region are straight lines on log-log coordinates. ðNuÞ can
be correlated via a least square regression analysis in the
form

Nu ¼ CðRaÞM ð18Þ

For Pr = 0.7, where the constant values of C and M are
listed in Table 3 for the four configurations considered
here.

Average Nusselt number ðNuÞ vs. Rayleigh number (Ra)
is plotted in Fig. 10. When compared to the different height
and radius ratios, it reveals that the ratio of HR = RR = 2.0
has largest average Nusselt number at the mid-high Ray-
leigh number, i.e., (5.0 � 104

6 Ra 6 106). This configura-
tion implies that the thermal convective heat transfer
has a best and optimum space. When the ratio is
HR = RR = 1.2, the average Nusselt number has smaller
value at the overall Rayleigh number. Within such geome-
try provides least favored circumstance for development
of natural convection, but the value of maximum stream
function of a narrow gap (HR = RR = 1.2) is larger than
that of a spacious gap (HR = RR = 5.0). This is apparent
when we compared it with Figs. 3–5, respectively, which
shows that at fixed Rayleigh number, as the height and
radius ratios increase, the maximum stream function will
be reduced, which is examined in Table 4. However, the
Table 2
Average Nusselt number

HR = RR Nu for Ra

103 5 � 103 104

Pr = 0.7
1.2 1.00367 1.12011 1.22905
2.0 1.01775 1.23794 1.44840
3.6 1.02947 1.28136 1.47159
5.0 1.03119 1.23988 1.40425
influence of height and radius ratio should have a best ade-
quate value of ratio that provides the maximum average
Nusselt number.
5 � 104 105 5 � 105 106

1.62086 1.93244 3.03176 –
2.19073 2.57971 3.67983 4.28049
2.02940 2.32435 3.21156 3.70802
1.85396 2.09534 2.83389 3.25627



Table 4
Maximum stream function

HR = RR wmax for Ra

103 5 � 103 104 5 � 104 105 5 � 105 106

Pr = 0.7
1.2 1.27333 6.26177 10.45337 28.10452 43.52931 105.31536 –
2.0 0.60906 3.03362 5.14669 13.56798 18.70234 23.74348 26.94677
3.6 0.33159 1.62781 2.64004 5.91355 7.63219 10.50863 11.67470
5.0 0.23912 1.17047 1.89283 4.11299 5.26134 7.59035 8.18672
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5. Conclusions

The Newtonian fluid between the sphere and vertically
cylinder with isothermal boundary conditions has been
analyzed numerically by a finite difference method. The
steady behaviors of the heat and fluid flow in the annulus
have been visualized by means of contour maps of iso-
therms and streamlines. The numerical results obtained
further indicate that heat and fluid flow patterns in the
annulus are primarily dependent on the Rayleigh number
and the height and radius ratio. The major results may
be summarized as follows: (1) at fixed height and radius
ratio, the average Nusselt number increases with increase
in Rayleigh number; (2) under the situations of the various
fixed Rayleigh numbers, the average Nusselt number
always increases fast with the increase of the height and
radius ratios initially until it reaches has maximum value
then it mitigating decreases; (3) the maximum stream func-
tion (which the position located on the center of main vor-
tex) decreases with increases in height and radius ratio
when the Rayleigh number is unchanged; and (4) the max-
imum heat transfer is dependent of the height and radius
ratio which provides the best thermal convection gap space
under the various different Rayleigh number. The above
results of numerical calculations can be applied to the real-
istic case of solar fluid heater. The thermal energy storage
may be designed in the optimum ratio of geometry. It will
obtain the best thermal energy storage performance.
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